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EFFECT OF JET INJECTION ANGLE AND NUMBER OF JETS ON MIXING AND

EMISSIONS FROM A REACTING CROSSFLOW

AT ATMOSPHERIC PRESSURE

D. St. John and G.S. Samuelsen

UCI Combustion Laboratory

University of California at Irvine

Irvine, California 92697-3550

ABSTRACT

The mixing of air jets into hot, fuel-rich products of a gas turbine primary zone is an impor-

tant step in staged combustion. Often referred to as "quick quench," the mixing occurs with

chemical conversion and substantial heat release. An experiment has been designed to simulate

and study this process, and the effect of varying the entry angle (0 °, 22.5 °, and 45 ° from normal)

and number of the air jets (7, 9, and 11) into the main flow, while holding the jet-to-crossflow

mass-low ratio, MR, and momentum-flux ratio, J, constant (MR = 2.5; J = 25). The geometry is a

crossflow confined in a cylindrical duct with side-wall injection of jets issuing from orifices

equally spaced around the perimeter. A specially designed reactor, operating on propane, pres-

ents a uniform mixture to a module containing air jet injection tubes that can be changed to vary

orifice geometry. Species concentrations of 02, CO, CO v NO x, and HC were obtained one duct

diameter upstream (in the rich zone), and primarily one duct radius downstrea.m of the orifice

centers. From this information, penetration of the jet, the spatial extent of chemical reaction,

mixing, and the optimum jet injection angle and number of jets can be deduced.

NOMENCLATURE

D

DR

J

MR

n

main duct diameter

jet-to-mainstream density ratio

jet-to-mainstream momentum-flux ratio

jet-to-mainstream mass-flow ratio

number of orifices

P pressure

R main duct radius (D/2)

0 jet entry angle
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overall equivalence ratio

rich zone equivalence ratio

INTRODUCTION

Various systems, such as fuel injection and exhaust temperature control processes, rely on jet

mixing with a crossflow of gas to mix streams of fluid rapidly and thoroughly. Jet mixing in a

crossflow may also play a fundamental role in the next generation of low pollutant-emitting

engines such as the Rich-burn/Quick-mix/Lean-burn (RQL) combustion concept. The formation

of various pollutants is driven by high temperatures attained in near-stoichiometric reactions.

Therefore, the strategy in this combustor design lies in minimizing the lifetime of, as well as pre-

venting the formation of, near-stoichiometric fluid packets. As passing through stoichiometric

regions is inevitable, rapid mixing reduces the lifetime of the stoichiometric packets, while the

production of a uniform fuel-lean mixture precludes their formation.

A previous study (ref. 1) at the UCI Combustion Laboratory (UCICL) involved the construc-

tion of a facility that handled reacting tests at atmospheric pressure in a cylindrical crossflow

configuration. A 10 round hole case was tested to explore the types of information that could be

gathered from the experiment. The study in reference 2 expanded upon this initial work by

addressing whether, for a given jet-to-crossflow momentum-flux ratio and mass-flow ratio, a

configuration with an optimal number of orifices can yield rapid mixing of air jets into a rich

crossflow, and result in a uniformly-lean mixture with minimal potential for pollutant formation.

NO x reduction is a driving force in combustor design today. Previous studies motivated by

the RQL scheme have shown several factors to be influential to the efficacy of the quick-mix

section (refs. 1 and 2). The present study investigates the sensitivity of fuel-air mixing to geomet-

ric variation in a quick mixer for a given set of flow conditions.

BACKGROUND

The gas turbine combustor contains many examples of jet mixing in a reacting crossflow, as

evidenced by the presence of air ports in the primary, intermediate, and dilution zones of con-

ventional combustors. An understanding of the jet mixing process becomes important in guiding

the design of the ports to obtain the desired mixing fields for given operating conditions. The

prediction of jet mixing in combusting flows is especially important in an application such as the

quick-mix section of the RQL combustor, where poor mixing of jet air with the rich, reacting

crossflow can lead to hot pockets conducive to pollutant formation. Nonreacting multiple jet in

crossflow mixingexperiments are a tool to address this problem, as they are an inexpensive and

convenient tool for predicting mixing fields in combusting flows.

Numerous studies on the jet in crossflow problem have yielded insight on such flow field

characteristics as the jet structure and penetration, the development of vortices, the jet entrain-

ment of crossflow fluid, and the flow field distributions resulting from jet mixing. An extensive

listing of documented jet-in-crossflow studies performed in the past few decades can be found in

references 3 to 6. Note that many of the studies cited in these summaries are of a single jet in an

unbounded crossflow or are otherwise inappropriate for direct application to a confined mixing
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problem.Although thesinglejet is akey componentin combustorflow fields,theseflows are
usuallyconfined,andinteractionbetweenjets is critical.Also, becausethereferenceslistedin
references3 to 6 areextensive,only thosepapersfrom whichspecificmaterialis mentioned,or
thosepublicationsthatpost-datethesummaries,will becitedin this paper.

While thejet mixing studiesillustratemuchactivitywith respectto anonreactingsystem,
researchinto reactingjet-in-crossflowsystemshasbeenlimited. Testsonmultiplejet mixing in
reactingflows havebeenperformedonmodelgasturbinecombustorsof acan-type,or cylindri-
calductgeometry.In manyof theseexperiments(refs.7 to 10),themodelgasturbinecombus-
torscontainedtwo setsof holesfor primaryanddilution air mixing typicalof conventional
combustors,asopposedto asinglestagequick mixing scheme,suchasthatoftenfoundin an
RQLconfiguration.Thesestudieswerealsoconcernedwith varyingoperatingconditionssuchas
fuel injection (ref. 7), air preheat(ref. 8), fuel-air ratio (ref. 9), or themomentum-fluxratioof the
primaryjets (ref. 10).In onestudy,ageometricparameterizationwaspursued,but wasrelatedto
varyingthepositionsof therowsof theprimaryanddilution jetsratherthanwith changingthe
orifice configurations(ref. 10).An experimentperformedon amodelRQL combustoroperating
atvariouspressuresandinlet temperaturesdid yield NO×emissionsmeasurementsfor a20 round
holemixing section(ref. 11).Theresultsfrom thisRQL studyalsoemphasizedthattheoptimi-
zationof thequick-mixingsectionwasintegralto loweringthetotalNOxemissionsfrom the
RQL combustor.

On thewhole, thesereactingtestsvariedoperatingparametersin orderto affectthedistribu-
tionsof emissionsandtemperature.In reference2, it wasdesiredto vary thenumberof orifices
at asetmomentum-fluxratio in orderaffectthemixing andreactingfields.This studycombines
thediagnostictoolsandanalysisutilized in reference1andbuildsupona seriesof relatedwork
performedonnonreactingjet mixing in acylindricalduct.Nonreactingstudies(refs. 12and 13)
surveyedtheeffectof thejet to crossflowmomentum-fluxratioandtheshape,orientation,and
numberof orificesonjet penetrationandmixing. Optimalorifice configurationsweredesignated
asthosethatproduceduniform mixing within aspecifiedlength(e.g.,oneductradiusfromjet
injection).Dependingon thechosenjet to crossflowmomentum-fluxratio J and the orifice

spacing to duct height ratio S/H, different optimal orifice configurations can be obtained. How-

ever, it was unknown if an optimum configuration identified through nonreacting experiments

would apply in reacting flows.

A recent study (ref. 14)investigated the effect of preheated inlet air on mixing and emissions

for optimally penetrating jets, as well as under- and overpenetrating ones.
The orifice thickness, l/d, is a significant difference between the present and previous studies.

In all previous studies at UCICL injection was through sharp-edge orifice (1/d << 1) whereas

I/d = 5 in the current study. The interested reader should see reference 15.

The objectives for the study reported in reference 2 were to determine an effect between jet

mixing and the achievement of desired outlet conditions, and to identify an orifice configuration

leading to optimal mixing at a set jet-to-crossflow momentum-flux ratio and a set mass-flow

ratio. It has been shown that the most important flow variable is the jet-to-mainstream

momentum-flux ratio, J. For a given value of J, there are three gross geometric features which

can be modified in a cylindrical (can-type) combustor section. These are the shape of the jet

orifices, the number of orifices, and the angle of injection by which the jets are introduced into

the main flow. Previous studies under nonreacting conditions have indicated an insensitivity of

mixing to orifice shape. Hence, that leaves two variables to be explored, jet injection angle (®)

and number of jets (n).
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The goal of the present study is to identify the optimum value of ® and n, in the mixing sec-

tion in a cylindrical main duct, for a given set of fixed parameters.

EXPERIMENT

This section describes the facility, diagnostics, and test matrix used for the work. Figure 1 is

a general depiction of the experiment and illustrates the variable parameters investigated in this

study.

Facility

The experiment was conducted on a UCICL test stand described in reference 1, and slightly

modified to accommodate the current experiment. A schematic of the modified test stand is

shown in figure 2. The modular design of the mixing section allows for the testing of various

geometries. Nine stainless steel quick-mix jet modules were fabricated in order to accommodate

the jet injection angle and jet number variations explored in this study. The diameter of the main

duct, D, is 80 mm, and the length-to-diameter ratio (l/d) of the jets is kept at a constant value of 5

for all of the modules. A typical quick-mix module is shown in figure 3 (n = 7, ® = 45°).

The combustor is up-fired on premixed propane and air. Propane was injected and mixed

with room airl4 ft upstream of the ignition source. Main air was supplied to the system at a flow

rate of 0.4 standard ft3/min (SCFM), which ensured a 33 ft/s bulk flow velocity at the point of

ignition. The plenum surrounding the mixing module section was fed by four equidistant, indi-

vidually metered airports located toward the base of the plenum. By controlling appropriate
flowrates, momentum-flux ratio is held constant at a value of J = 25 for each of the test cases.

The primary reaction zone of the combustor is stabilized by an on-axis recirculation region

generated by a contracting quarl and a 45 ° vaned production engine cast swirler. Between the

recirculation (rich) zone and the mixing module, products and reactants flow through an oxide-

bonded silicon carbide ceramic foam matrix to remove the swirling component and provide a

uniform plug-flow.

Diagnostics

A double-jacketed, water-cooled, stainless steel probe was mounted such that its 45 ° angled

tip could be positioned on the measurement pIane of interest. Pointwise measurements of carbon

monoxide (CO), carbon dioxide (CO2), unburned hydrocarbon (HC), oxygen (O2), and the com-

bination of nitrogen oxide and nitrogen dioxide (NOx) concentrations were made by traversing

the combustor in the horizontal plane (the extractive probe remains fixed) and drawing gas sam-

ples continuously through a bank of emission analyzers. A digital encoder monitors the position

of the probe tip relative to the center of the quick-mix module: ".......

Th-eplanes at which' measurements Were made are indicated in figure 3. The main experi-

mental plane was located at an axial distance equal to one duct radius, R, (40 mm) downstream

of the center of the orifice. Emissions were also measured at a second plane, one duct-diameter

(80 mm) upstream of the jet centerline, in order to verify a uniform rich entry section.

f
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Flow symmetry was verified for the primary plane, and data were taken from sampling points

across a fraction of the entire plane, in order to reduce the volume of data. The primary plane of

data (x/R -- 1) consisted of 16 points distributed across a sector which includes two orifices.

Therefore, the exact sampling region varies with n. Figure 4 shows the locations of the sampling

points for each of the three primary planes (n = 7, 9, and 11), and the rich-zone sampling plane as

well, which encompassed the entire cross-section, but at a courser distribution.

Test Matrix

Three values for each of the variable parameters (n and ®) were selected to attempt to bracket

the optimum case (n -- 9 for J = 25 from nonreacting tests). Table 1 lists the fixed and variable

design conditions. The test matrix is simply the nonreduced combination of each variable, and is

shown in Table II.

Emissions measurements were made across the plane one radius, R, downstream of the jets,

for each of the test conditions. The effect of jet injection angle and number of jets in the mixing

zone on the mixing and emissions distributions one radius downstream can be assessed by com-

paring the resulting measurements of each test condition.

RESULTS AND DISCUSSION

An evaluation of the rich reacting product entering the mixing module zone was performed

before collecting primary plane data in order to ascertain the uniformity of the flowfield exiting

the rich recirculation zone. Following this verification, species concentration data were obtained

at the primary measurement plane for each of the nine test cases.

Rich Zone Verification

Table IlI shows the species concentrations across the rich zone. The species concentrations

present in this zone are consistent with chemical kinetics predictions. These measurements were

repeated for several cases and the overall result was the same each time: The upstream condi-

tions provide a rich product environment that is uniform and consistent enough to provide a

practically fixed boundary condition.

Downstream Measurements

Figures 5 to 8 illustrate species concentration distributions at the sampling plane for CO,

CO2, 0 2, and NO X,respectively. Plots of HC are not shown because measurements were essen-

tially zero in all cases. All species concentration distributions were generated from the pointwise

data obtained using a geostatistical interpolation algorithm known as kriging.

The relative striations evident in the plots give a qualitative characterization of the extent to

which mixing has occurred at this point. The area-weighted average values for each species
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concentrationateachconditionarealsoshownon figures5 to 8. Theseplotsexhibit several
pointsof interest.

First, thelargestjet penetrationwasobservedfor theO = 0°, n --7 case.Increasing® and/or

n decreases jet penetration so it is not surprising that the most underpenetrating case is for

O = 45 ° and n = 11. There seems to be a trade-off between O and n such that jet penetration

appears to be similar along diagonal lines such as for ® = 0 °, n = 9 and ® = 22.5 °, n = 7.

It also appears, within the ranges investigated, that jet injection angle, O, has a greater effect

on mixing than do the number of jets, n. That is, the difference between adjacent plots is more

pronounced in the direction of ®, and less so along the n axis.

Also, the penetration of jets away from the wall is clearly observed in all cases. In fact, over-

penetration is indicated for ® -- 0 ° and n = 7,whereas underpenetration is clearly indicated for

® = 45, n -- 11. These cases are characterized respectively by unreacted fluid of jet origin near

the center of the duct, and a core of rich products there. The overpenetration of the jets and the

rich core region indicate that mixing has not progressed far in these cases.

Finally, it appears that the best mixing occurs for O -- 0 ° and n = 9. The striations are few and

the colors smooth, relative to the other cases. No over-penetration of the jets is apparent, and the

core is not rich, both of which suggest good mixing. The area-averaged values support the quali-

tative results of the plots as well, indicating the optimum combination of parameters for this par-

ticular configuration is O = 0 ° and n = 9.

SUMMARY AND CONCLUSIONS

This work was an investigation into the effect of jet injection angle and number of jets on

mixing and emissions in a cylindrical duct at atmospheric pressure. A uniform rich plug flow

condition was established and the downstream emissions of 9 different geometric variations were

evaluated and compared. The results indicate the following conclusions:

• Within the range of parameters investigated (0 ° < O < 45 °, 7 < n < 11)jet injection angle

has a greater relative effect on mixing than number of holes.

• The optimum case was observed to be O = 0 ° and n = 9.

• There appears to be a trade-off between the optimum number of jets and their injection

angle. Note also that as O increases, the optimal number of jets decreases
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TABLE I.--FIXED AND VARIABLE DESIGN
CONDITIONS.

Pressure,P....................................................................l atm
RichZoneEquivalenceRatio, _r-..................................1.66
Overall EquivalenceRatio,_o-......................................0.45
DensityRatio,DR ...........................................................3.3
Momentum-FluxRatio, J..................................................25
Mass-FlowRatio,MR .....................................................2.5
DuctRadius,R ....................... 40 mm

Variable
®, JetInjectionAngle......................................0%22.5°, 45°
n, numberof jets.......................................... 7, 9, 11

TABLE II.--TEST MATRIX
Case

1
2
3
4
5
6
7

0 n

45.0 ° 7

22.5 ° 7

0.0 ° 7

45.0 ° 9

22.5 ° 9

0.0 ° 9

45.0 ° 11

22.5 ° ! 1

0.0 ° 11

TABLE

Point CO CO2 HC 02

(%) (%) (ppm) (%)
1 12.6 6.5 3420 0.1

2 12.5 6.5 5395 0.0

3 12.5 6.5 4205 0.0

4 12.6 6.5 2970 0.0

5 12.3 6.6 5540 0.0

6 12.3 6.6 3685 0.2

7 12.6 6.5 4570 0.0

III.--RICH ZONE VERIFICATION

NO_

(ppm)

9.9

10.5

I0.6

8.9

10.2

9.3

10.3
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Figure 1 ,--RQL concept and variable parameters.
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Figure 2.--Experimental facility schematic.
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